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AN ADAPTIVE STRATEGY 
FOR ELLIPTIC PROBLEMS INCLUDING 

A POSTERIORI CONTROLLED BOUNDARY APPROXIMATION 

W. DORFLER AND M. RUMPF 

ABSTRACT. We derive a posteriori error estimates for the approximation of 
linear elliptic problems on domains with piecewise smooth boundary. The 
numerical solution is assumed to be defined on a Finite Element mesh, whose 
boundary vertices are located on the boundary of the continuous problem. No 
assumption is made on a geometrically fitting shape. 

A posteriori error estimates are given in the energy norm and the L2-norm, 
and efficiency of the adaptive algorithm is proved in the case of a saturated 
boundary approximation. Furthermore, a strategy is presented to compute the 
effect of the non-discretized part of the domain on the error starting from a 
coarse mesh. This especially implies that parts of the domain, where the mea- 
sured error is small, stay non-discretized. The presented algorithm includes 
a stable path following to supply a sufficient polygonal approximation of the 
boundary, the reliable computation of the a posteriori estimates and a mesh 
adaptation based on Delaunay techniques. Numerical examples illustrate that 
errors outside the initial discretization will be detected. 

1. INTRODUCTION 

Adaptive Finite Element methods to solve partial differential equations numeri- 
cally are widely used. Their theoretical foundation is a so called a posteriori error 
estimate, that is a computable estimate for the error in a suitable norm in terms of 
the actual numerical solution and data of the problem. Such an estimate allows the 
computation of a solution with a prescribed error tolerance. The local contributions 
to this error estimate can be used to judge the local error distribution and hence 
to mark a set of elements where further refinement of the mesh is necessary. 

Usually, it is assumed that the error from the representation of data and the 
polygonal approximation of the boundary is negligible. But these assumptions 
could lead to wrong results in practice since they are not fulfilled on coarse grids. 
In the present paper we will focus on the effect of boundary discretization on the 
error. So far, only the case of coinciding discrete and continuous boundary has been 
considered in the a posteriori analysis. From the vast literature on this subject we 
cite [BW, BR, Vel, Ve2]. A robust algorithm which takes into account the error 
due to unavoidable data approximation is described and analyzed in [Dol]. 

An a posteriori error analysis for the approximation of linear elliptic problems 
on domains with piecewise smooth boundary is given. The numerical solution is 
assumed to be defined on a Finite Element mesh, whose boundary vertices are 
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located on the boundary of the continuous problem. We derive a posteriori error 
estimates for the error in the energy and L2-norm without assumptions on the 
quality of the approximation of Q by Qh. 

We will observe that those terms in the a posteriori error analysis which are 
due to the boundary approximation depend on the boundary geometry and on 
prescribed data. Although the boundary geometry may be quite complicated, a 
coarse approximation may be sufficient if there is no additional structure in the 
solution due to prescribed data. On the other hand, even very "smooth" data 
along the boundary can cause large error terms due to the boundary shape; for 
instance, at bottlenecks in the domain. So we ask for an adaptive strategy that is 
capable of noticing that, for a given error tolerance, a quite coarse approximation 
of Q is sufficient or that even large parts of the domain can stay non-discretized. 

As a model problem we will consider the Dirichlet problem for Poisson's equa- 
tion on some bounded domain Q C R' with piecewise smooth boundary, prescribed 
right hand side and boundary values. Motivated by the requirements from realis- 
tic applications, we assume that data can be requested at arbitrary points in the 
domain and on the boundary respectively. No explicit extension of boundary data 
is required, and the implementation should manage with functions evaluating right 
hand side and boundary data pointwise. 

We then describe an implementation of a robust and efficient algorithm in two 
space dimensions based on linear Finite Elements. 

The algorithm starts with a geometrical approximation of the boundary of Q. 
Here we use an adaptive path following strategy that computes a polygonal approxi- 
mation of OQ, where OQ is assumed to be implicitly defined by a set of smooth 
functions. 

The error terms that come from the non-discretized part of the domain are 
computed efficiently. Here, efficient means that the computing cost to estimate 
errors due to non-discretized parts of the domain is of lower order compared with 
the cost of an overall regular approximation of the domain. The local estimates 
include the testing of data at random points which helps in detecting local errors 
reliably. 

In examples we demonstrate that starting from a very coarse approximation of 
Q our method is capable of computing numerical solutions even if essential error 
terms come from the non-discretized part of the domain and that regions with small 
error contribution will stay non-discretized. 

The organization of the paper is as follows. Sections 2 and 3 are devoted to 
notations, problem setting and main assumptions. In Section 4 we prove a ge- 
neralized interpolation result, and Section 5 contains the main theoretical results. 
Section 6 gives computable upper bounds for some Sobolev embedding constants, 
which occur in the estimates, in terms of the underlying domain. In Section 7 we 
describe a robust implementation in two dimensions, including path following, mesh 
generation, refinement and local error estimation. Finally, several computational 
results are given in Section 8. 

2. NOTATIONS 

Let G be a bounded domain in RT (n = 1, 2,3) with piecewise smooth boundary. 
By dG we denote the diameter of G. For m E N0 and p > 1 let Hm'P(G) be the 
well-known Sobolev spaces [Ad], by notational convention H'?P(G) := LP(G). The 
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norm of v E LP(G), respectively v E Hm'P(G), is defined by 
1 m 

| V110,p;G = (J ivi)Y 1V1m,p;G = 3E ||V1V|o,p;G- 
G s=O 

In case p = 2, we will simply write m;G 

Fix any domain Q C Rn (n = 2, 3) with the above properties. Let Qh be a domain 
with polygonal boundary and Th be a regular decomposition (discretization) of Qh 

into closed n-simplices [Ci, Ch. 2, ?2.1, ?2.2] such that each vertex on &Qh is also 
an element of OQ (Tha is the set of simplices that have nontrivial intersection with 
the boundary and Th? := Th\Th&). By 'h we denote the set of faces (6ha the faces 
which are part of OQ h = I h \ F a) 

To Th we assign the shape constant 

r dT dT} 
clh =1max max , max 

TErh PT T,TIE'h:TnTflT'o dTl 

where PT denotes the radius of the largest inner ball of T. 
Let Vh be a Lagrangian finite element space onQh as defined in [Ci, Ch. 2, 

?2.3]. Elements of Vh are assumed to be piecewise polynomials (with respect to 
the discretization Th) of maximal degree M > 1 and globally continuous; hence 
Vh C H1'2(Qh). Vh is characterized by a set of nodes p E /h with p E Qh. We 
assume that each element v of Vh is uniquely determined by the values on p E Mh. 
Thus 1bp(q) = 8pq defines a basis {'/)p}pcgh of Vh, called the nodal basis. 

Define XhV to be the set of nodes p contained in &Qh. Let Vh be the linear space 
spanned by {fbp IpEAh?, where XhN = Xh \ XhN- We use additional subscripts in the 
notations for JVh, 8Eh to describe certain subsets: 

Xh;T ={pXhIpET}, 

Sh;T ={EES|hJECOT}. 

Furthermore denote by WT, wp, WE, for T E Th, p E Xh, E E 'Eh, respectively, the 
following subsets of Qh: 

WT X{ C Qh X ET' T' E ThT TnT' OT0}, 

w P ={X E Qh | c T', T' c Th, p c T'}, 

WE {X C Qh C c ET', T' C Th, E c AT'}. 
In terms of this notation we obtain for the nodal basis supp bp C wp. Since in 
general Q 74 Qh, we have to provide extensions for functions on Q to Qh and 
vice versa. If v C H1'2(Q), we extend it by zero outside Q to get a function in 
H1'2 (Qh) (an analogous extension is given if we exchange Q and Qh). For notational 
convenience, we will denote this extended function again by v. If Vh E Vh, we assume 
that we have a uniquely defined extension Vh C H1'2(Q U Qh) such that Vh = Vh on 
Qh and Vh is smooth on connected components of Q\Qh. Let us denote the space 
of these extended functions by Vh. For the following, we will make the assumption 
that Q\Qh is decomposed into disjoined closed subsets: 

Q\Qh U QE nQE -0 for E 7# E'. 
E&Eah 

That is, to each E C F'9 there is a (not necessarily connected) non-discretized closed 
subset QE of Q with piecewise smooth boundary (see Figure 1). It is assumed that 
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QQE n OQ and QQE n E have non-vanishing n - 1-dimensional measure for each 
connected component of QE* Thus Th : hU {QE E E Sa } is a decomposition of 
Q U Qh. Furthermore, for later usage we define 'Eh := h U {(OQE\E) n Q I E E Sall 
and 9E := WE U QE for E E S,a. In two space dimensions the set QE for E E Sa can 
be uniquely defined as the closure of the union of connected components of Q \ Qh, 

that have a non-vanishing intersection (with respect to n - 1-dimensional measure) 
with E, because of our assumption that boundary vertices of Th are located on OQ. 
By that choice there are no extra edges outside Th, and 'h coincides with Sh. In 
three dimensions the edges of boundary faces are generally not contained in OQ. 
This leads to an ambiguity in the definition of the sets QE (for a hint on a possible 
constructive definition see Section 7). 

3. THE MODEL PROBLEM 

As a model problem let us consider the Poisson problem with Dirichlet boundary 
conditions. That is, for given domain Q (as above), sufficiently smooth functions 
f: Q -* R, g&: OQ -* R we seek a function u: Q R R (having at least two 
continuous derivatives) such that -Au = f in Q and u =ga on OQ. In variational 
form this problem reads as follows: 

Problem (P). For f E L2(Q), ga E H2X2(0Q) find u E H1'2(Q) such that 

j vu.Vx$Xjf~ Vq$ E H1,2(Q) 

and u = ga on OQ. 

(For a definition of Sobolev spaces Hm'P with positive real m see [Ad].) This 
problem admits a unique solution by the Riesz-representation theorem. Under 
appropriate assumptions on f, ga and Q one can prove that u has two (weak or 
classical) derivatives [LM]. 

The form of the discrete problem is similar: assume that approximations fh of 
f and ga of ga are given such that ga is the trace of some ghc Vh on &Qh. 

Problem (Ph). For fh E L2(Qh), gha as above, find Uh E Vh such that 

vuh f vh - j fh Oh V8h E Vh 
Qh Qht 

and Uh = g on Qh 

Testing this equality on the nodal basis (see Section 2), we arrive at a sparse 
positive symmetric system of equations that can be solved efficiently (see Section 
7). 

If problem (P) admits an H2'2-regular solution and suitable approximations fh 

and ga are used, the following a priori estimate holds in case M = 1: 

V(U - Uh) I |O;Q < C hmax | U112;Q 

where hmax := max dT and C depends on Q and Uh only [BK]. 

Lemma 1 (Sobolev inequalities). Let G as in Section 2 and S C OG be a set with 
non-vanishing n - 1-dimensional measure. 
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Z. There is a constant Cp(G, S) > 0 such that for all v E H1l2(G) with v 0_ on S 

11V1O;G < Cp(G, S) I IVV1 O;G. 

If S = OG, we let Cp(G) := Cp(G, OG) . Cp(G) is called Poincare's constant. 
ii. There is a constant Ca(G) such that for all v E H1l2(G) 

I VHO;&G < Ca(G) (1Vv|O;G + d31 1V|O;G). 

iii. With S as above, there is a number Ca(G, S) such that for all v E H1'2(G) with 
v 0_ on S 

I |V| O;&G < Ca(G, S) i 1VV O;G. 

For the proof we refer to [Ad, 5.22, 6.26] and [Al, A5.7]. 

4. INTERPOLATION ESTIMATES 

In order to prove error estimates, it is necessary to refer to a (continuous) pro- 
jection operator from H1'2(Q) into the test space Vh. We use a construction given 
in [Cl] to define projections 

I ~~~~h1S Q ?H' (Q) Vh 

as follows: for p E /h let -yp be the best L2-approximation of v in PM (the space of 
polynomials up to degree M) on supp fp. Then define: 

(IhV)(p) : Yp(p) for anl p E.h, 

(I?v)(p) {'YP(P) for p EA N, 

(Recall that v is extended by zero outside Q.) In terms of the set of nodal basis 
functions {f/pj}PfEA (see Section 2), we have the following representations: 

IhV = E yp (P) op, 'h V = E yp (p) op- 
PEAfh pE Ah 

Since Qh . Q, we cannot directly apply the estimates for v - Ilv proved in [Cl]. 
Before stating the generalizations for the present situation, some additional notation 
is needed. 

Definition 1. i. For any EC Th and q E [1, oc] we define 

LI(T) {= (WT)TETr WT E Lq(T) VT E T}. 

For v, w E L2(T) we define a scalar product, respectively norm, by 

(VI w E J VT WT, IIVIIT = (S| IIVTI O;T) 
T) VT T T 

If Qr is the domain that is composed of all T E we can identify w E L2 (Q) 
with (WlT)TET E L2(T) and therefore write IQTvw = (v,w)T for v, w E 

L2(Q). In the same way let us define for any set I C sh 

Lq(S) := {(WE)E& I WE E Lq(E) VE EG} 
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with corresponding scalar product, respectively norm (q = 2): 

(v,w)E =~ zJ VEWE, v (S |VEO;E). 
EEE B EE? 

ii. For Vh E Vh let [OVh]E be the jump of the normal derivative of Vh on some 
E ' sh, that is, if n is a (fixed) unit normal vector on E, we define 

flim n . V(Vh(X +sn)-Vh(X-sn)), for x c E n Q, 
[0,Vh]E(X) = 8 

s+0 
'10 for x c F, x ~Q 

Since Vh is piecewise smooth, we have that [Onvh] := ([OVh]E)EEh L t2 (h) 

and ([OnVh], z), is defined for arbitrary z c H1'2(Q U Qh) sinceZE z L2(E) 

for any E c 'h, (see Lemma 1). 
iii. We define a mesh-size function h L`('Th,) by 

dT if T ET Th 

hT := |^ dT (1 + min CqdE 2) if T 
IT pEAf(; EESj9 ;Th 

CpE if T = QE for some E Ea 

where (for notation see Lemma 1) 

gh;p =-l ?h | } 

Cp := Cp(QE, IQE n OQ), CqE = C(QE ,IQE n OQ). 

Note that the existence of finite constants CpE, CaE is guaranteed by our as- 
sumptions on QE (see Section 2). 

iv. For Vh C Vh define 

Dl(vh) = (5E d+11h [&nVh] 1?)2, 

D1;a(Vh) (S C<2| [OnVh] Ho;aEfnQ) 
EE?Sh 

Lemma 2 (Interpolation estimates). There are constants c1, C2, depending only 
on the shape constant Uh, n, and on M, such that for all w c L2(Th), Zh C Vh, and 
v C H01,2( 

(W, v - Iv) (c| hw ||h hw V O; 

I ([9nzh],v -Iv)lh ? (C2 b (zh) + D1 D(Zh)) IIVVIIO;Q- 

Proof. We start with the following decomposition (recall that vO outside Q and 
Ihv =0 outside Qh): 

(w, v - (w,V - + 

- (W, V-IhV)? + (W, IhV-IhV)T?h + (W, V)th\T. 
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Using the result in [Cl], the first term on the right hand side can be estimated as 
follows: 

(W, v - Ihv)>r < CI lhWl%h IVVHO;Qh 

(note that h > dT for T Th). To estimate the third term, we recall that Th\Th 
consists of sets QE for E E a. Since v vanishes on QQE n OQ, we have 

IIVIIO;QE < Cp |I|VV|O;QE, 

and this gives 

(w,> ? )%h\%h j - E I WV ? < Cp IIWI O;QE IVVI O;QE. 
V)Ih?T E?h 

Since Ihv - Ihv vanishes on elements in T?, we have for the second term 

(W,IhvIv) I < E IWIO;T ||IhV IhVHO;T. 

TEThc 

By definition of the interpolation operators we have 

lIlhV - hVIV0;T < IIYP(P)>'PIIO;T < CdT IIYPIO,00;E- 

P h; T P h; T 

Since -yp is a polynomial, we can estimate its L'-norm by its L2-norm on the 

rescaled face E/dE (independently of yp). Note further that -yp also obeys the 

inequalities I |V8OYP H |0;T < CHI IVSVIHIO;WLT for s 0 {O, 1} and T c Th. For each E Fa 

let T(E) be the unique element in T2h with E C OT(E). Then 

n-1 _n-1 

IIYPIIO,OO;E E I IcYP I IO;E K CE d I |VIIO;E + IIV - YPIIO;E 

< c dE2 (Ca VVI IO;QE 

+[C dT(E) ( V(V- YP) I IO;T +(E) +dE) I IV - YPI IO;T(E))) 

<CdE2 (CThVVHO.QE + dT(E) IVVIIO;WT(E)) 

Here we use again the results of [Cl] and Lemma 1 on the rescaled triangle 
T(E)/dT(E). Thus 

|(WI V -Ih0V), 

? C|hWT hE WVVO;Q + 5 cp |Wo;QE |IVVIHO;QE 

EEcha 

+C dTj|W||O;T( 11VIIO;WT+ 5 Em C dE VV(0.QE) 
< ~ T C~N~;T |WISIVI;Q+( c IIO E)Sch;p 'I 

? C ~hWH HVVHO;Q+ ( CiE21HW112E 2HV O;\h 
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E E 
~~~~~~~~2 

FIGURE 1. In the estimate of the interpolation error I'V - IhV we 
are allowed to choose a face E with p C .Afh;E such that C4, gets 
small. In the above example we see that for node P2 in Xh;T the 
constant Ck-2 will be much smaller than Cka and for P1 the constant 
CEl already vanishes. 

and this leads immediately to the first assertion of the lemma. To prove the second 
inequality, we proceed as in the beginning of the proof: 

I([OUhV V- IVhV) |h 

11 [&nUh] 11O;E IIV - IhVO;E + E 11 [&nuh] Ilo;&QEnQ 11V11o;0Q-nQ 

EE?, EES?9 

< E || [&nuh] ||,^ T|V - IhVIIO;9T + E || [On Uh] 1|hT ||IhV -hV II0;9T 

TE'rh TsErh9 

+ E 13 [OnUh] 11o;&QEfnQ V 1V1o;aQEnQ 

For the third term we immediately get 

S I [nuh/] I O;&QEnQ IIVIIO;aQEnQ <( a CaH [Onuh/] HO;&QEnQ) 2'VVHIO;Q\Qh- 

EE?a EE?ha 

Using a previous result, we get for the second term 

5| [anUh] K;,1 T HIhV - IhVIO;aT < CE d 112 [anUh] Kl;T HIhV- IVhOIO;T 

TETh& TEfT2 

< c 5 dT [a3n?bh] |?Hg; (Hl VVH O;WT 5 EEg6 cgpVVOQ) 
hTTTT h;T 

while for the first term we again apply an estimate given in [Cl] and obtain 

E>3 [anUh] K|h - |-IhVHO0;&T ? C E dq | [anUh] ||h; IIVVHIO;WT. 
TEfh TTfh 

This proves the second assertion. 2 

Remnark 1. i. If Q = Qh, we have C<E = C = 0 and get the results of [Cl] for 
empty sets QEm 

ii. The numbers C<E, CpE both depend on the size of QE* Explicit bounds for the 
case n = 2 are given in Section 6. 
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Iii. Figure 1 gives an example of how the estimates benefit from an appropriate 
choice of edges in the evaluation of h. 

iv. Our estimates are based on the interpolation operators introduced in [Cl]. A 
different interpolation using L2-projections on faces instead of elements is given 
in [SZ]. With respect to those one could obtain similar results. 

5. A POSTERIORI ERROR ESTIMATES 

Definition 2. The continuous residual r(vh) e L2(Th) of Vh e Vh is defined by 

r(vh)T =f*|AVhIT + fhlT for T e Th, 
A\vhT + f for T T fh\Th. 

AVh T means that we take the Laplacian of the polynomial Vh T, considered as a 
function defined on Rn, evaluated on T. 

The following theorem generalizes a well-known a posteriori estimate for the case 
Q = Qh (see e.g. [Vel]) to the case Q # Qh under the assumptions made in Section 
2. Note that there is no condition requiring that aQ should be sufficiently close to 
aQh or that aQ is locally a graph over aQh- 

Theorem 1 (H1-a posteriori error estimate). Let u and Uh be the respective solu- 
tions of problems (P), (Ph). Let ULh be an extension of Uh as described in Section 
2, h the grid function defined in Definition l.iii, r(iih) the continuous residual 
(Definition 2), and g, gh C H1'2(Q U Qh) with g = u and -h Uh on 3Q. Then 
there are constants c1, C2 depending on ch, n, and M, such that for eh -= U-h 

|I|Veh||o;Q < cl |Hhr(Uh)H|Th + C2 D(Uh) + | hr(fth) I H;h\rh + DI,a(,h) 

+ 2 |lV(j- Yh)HI0;QUQh + Cp(Q) lf - fhlo;QnQh 

Proof. Let v e H1'2(Q) and Vh C Vh. Then the error is represented by 

jVeh * VV f Vj - /j Vh * Vv 

jf v - Vuh V(v -Vh) -j Vih * Vv-j fh Vh 
Q h Q\Qh Qh 

= (Aith, V-Vh); + ([anth], V-Vh) ?h +jf v- fh Vh 

= (r(iih), V-Vh),j + ([anh], V -Vh)h 
+ 

Qh 
(ffh)V. 

Taking especially Vh = 1hv and using Lemmata L, 2, and Definition 2 we obtain 

fOQh (f - fh) V | Cp(Q) If - fh I lo;QnQh |IIVVIO;Q, 
nQnh 

(r(iih), V - 
Vh) ?h (Cl |fhr(Uh)|Th + | hr(iih) I jfh\Th) | |VV I IO;Q, 

([anth], V - Vh) ? (C2 I(uh +)D1 a(h)) HVVH|o;Q- 



1370 W. DORFLER AND M. RUMPF 

Since eh - (j - gh) e H1'2(Q), we arrive at 

11|V(eh - (g-gh.)) I lo-s 

? Cl Ihr(Uh)IITh + |lhr(iih) K | T r + C2 D (Uh) + D2(th) 

+ IIV(- 9h) IH;QUQh + Cp(Q) If fhHlo;QnQh, 

from which our assertion immediately follows. D 

Definition 3 (Saturated state). In the following, we will, for technical simplicity, 
assume that for each T e Th2 there is at most one face E C Eh9. This is no loss of 
generality since we may otherwise refine such a simplex by bisection. We say that 
the approximation Qh of Q reached the saturated state if for each T e Th2 (and E 
as above) 

i. with T , Q there is a n-simplex T' c T, constructed from T by a parallel 
displacement of the face E, such that T' c Q and dT' > dT, 

ii. there is a n-simplex T", T c T", constructed from T by a parallel displace- 
ment of the face E, such that QE c T" and dT" < 2dT, 

iii. hT < 2dT for all T CT1h. 

Theorem 2 (Efficiency of the estimated H1-error in the saturated state). i. Let 

Uh)T, fhKT C PM for all T e Th and assume that conditions i. and iii. of 
Definition 3 are satisfied. Then 

Cl D (uh) + C2 1)hr(uh) I |1 < c (IVeh|Io;Q + |Hh(f - fh) I lo;QnQh): 

with a constant c depending on gh, n and M only. 
ii. Let n = 2 and conditions i.-iii. of Definition 3 be satisfied. For T e T2h define 

ih respectively fh on T" to be the extensions of the corresponding polynomials 
on T. Thus Df2<(ith) = 0 and 

C I Dl(Uh) + C2 H|hr(Uh)HTvrh + l|hr(tth) ITI\T ? C (< C VehIIO;Q + Hh(f -fh) I;Q), 

with a constant c depending on gh and M only. 

Proof. i. For any E E ,E and 0 e H12 (WE n Q) the following holds: 

j [9nUh] q- TE j (AUh + fh) q = LE VUh V- L0 fhq 
E ~~T:TCU)E TE WE 

= V(Uh -U) *VX70+ (f-Jh) - 
=E LE 

If T c Q, we can follow the arguments in [Vel] to get 

11 [anUh,] 111T + dTHI/AUh + fh I 10;T <C ( Veh I o;T +dTffh O ;WT), 

where the constant c depends on gh and M. 
In case T , Q we can use the same arguments as before on T' instead of T to 

get 

dTl ( 13 [dnUh] IO;EnT1 ) + dT'IIAUh + fh I 10;TI 

< C ( IVehHI Io;WT,nQ + dTHIf 
- 

fhO;wTnTnQ- 
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But by assumptions i. and iii. of Definition 3 and since [09Uh] and AUh + fh are 
polynomials, we can estimate these terms on T' from below by the corresponding 
terms on T. 

ii. For T C Th and E E Fh;Twe can proceed as before, taking into account 

| hr(iih)1 0;QE< I Hh(Aiih + fh) 1 10;QE + IHh(f- fh)I10;QE 

and estimate 

I lh(Aiih + fh)11O;QE< C dT" II Ai\h + fh| 0O;T" < C dT' I I/AUh + fHI 10;T' 

Remark 2. i. In the special case where fhlT is the local L2-projection of f on 
T n Q we can (in Theorems 1 and 2) estimate 

(f -fh) v ? C(y d2lf _fhI;TIVHOO,2 
I J (J h) v | C ( , T || Ol;T) IIVVIIO;O,QUQh 

and improve thereby the order of this term. But there is no way to compute this 
L2-projection for general f solely on the base of a given subroutine x -* f (x). 
But this is assumed to be the only way f (and also go) enters the numerical 
algorithm. 

ii. There is no limitation of the polynomial order of the finite element space. How- 
ever, since we use a piecewise linear approximation of the boundary only, the 
corresponding error terms will not be of higher order if we use elements of 
degree more than 1. 

iii. Theorem 2.ii shows that in case of negligible error in data f and go the error can 
be bounded, from both sides, in terms of the continuous residual r(uh) and the 
singular residual D1 (Uh) on Th. In the general case Theorem 2.i such a result 
holds at least on Th and this could be improved if one provides an appropriate 
definition of ith. 

Remark 3. In the following we sketch, for n = 2, how to prove monotone decrease 
of the error for the adaptive algorithm. For details of most of the arguments see 
[Dol, D62]. In Theorems 1 and 2 we proved estimates for the error eh on a grid Th 

in terms of quantities depending on Uh, fh and the error in data. Let for T E Th 

and A C Th 

IT =IC dT E K&n?h|O;E + C2 dT IIAUh +fHO;T, 
EEESh;T 

TcA 

If the error reaches the saturated state, that is, if we can guarantee that from a cer- 
tain grid Tho on, the error in data on Th is smaller than polTh (for sufficiently small 
ipto, depending on Ch and M), and Qh is in the s-aturated state for all refinements 

Th of Tho, we can prove that 

C p7Th < ||eh|o ? C0-rh' 

with positive constants c and C depending on Ch and M. This will be the case 
if data (f, g, &Q) is sufficiently smooth and approximated of higher order than 
the discretization error for the differential equation. A robust adaptive algorithm 
should in the beginning compute the local errors T as well as the corresponding 



1372 W. DORFLER AND M. RUMPF 

data error terms (see the right hand side of the inequality in Theorem 1). If there is 
evidence that the data error becomes negligible, its computation may be avoided. 
For proving convergence of the adaptive method, we have to be specific about 
the marking strategy and the refining strategy. Assume that we have computed 
the discrete solution on TH and the local errors (T)TcTH- Now we choose a set 
AH C TH such that 

'Q4H - nfTH' 

where V E (0,1) is a given parameter (for more information about 9 and AH 

see [Dol]). We now construct a refinement Th of TH in such a way that to each 
T E AH the local space Pbh E Vh I SUpp(h) C T} is of sufficiently large dimension 
(depending on the polynomial degree of the local residual). This enables us to prove 
that CrH < JIV(Uh - UH)HIo for po sufficiently small and c depending on po, V, 
Ch and M (similar to the proof of Theorem 2). Secolndly, we have to establish an 
estimate of the form 

| |VeH ? | Veh I | + - | IV(UH -Uh)|o + C THO 2 
This proof is quite technical and uses, in addition, that Definition 3 is fulfilled with 
2 replaced by 1 + y, for sufficiently small positive -y (depending on a and M). The 
proof, however, is significantly simplified if we assume that Q is convex. With Plto 
small enough, we will obtain from this 

IlVehlHo ? rIIVeHIHo 

for some r, E (0,1). Note that such a result cannot hold on coarse grids [Dol]. 

In the following we assume thrat Q is convex. In this case we have that Qh C Q 

and 

11,72VIIO;Q < IIA\VIIO;Q 2 H2,2( 1n HX(Q) 
OQVv Ce H '(Q) 

n Ht2 Q 
[Ka] (on non-convex domains with smooth boundary such an estimate would also 
hold but with a constant different from 1). 

Theorem 3 (L2-a posteriori error estimates on convex domains). For E E Sh9 let 
B E and BE1, Bg2 be some constants for which the Sobolev estimates 

|IVIIO;QE < Bp E 
2VIVHO;QE, |IVHo;,9QEnQ < Ba1 EllanV 10;E + Ba2 laflVHo;QE 

(n denotes the outer normal on E) hold for all v E H2,2(QE) with v _ 0 on aQE n 
aQ. Let BgE= Co(Qh) Bg1 +Baa2 for Co(Qh) := Ca(Qh) (1 + dQCp(Q)). Now 

define h as in Definition 1, but with dT replaced by dT and CpE, Cd dE2 replaced by 
B E, BEd 2 respectively. Define D 2 by replacing h by h, and D2 by replacing , a EB' 2 2 y epacn 
CaE by B]E. Then, with constants c3, c4 depending on Ch, n, and M only, 

| eh||o;Q < C3 |lhr(uh)H|Trh + C4 D2 (Uh) + I Ihr(iih) I\h + D2,a(iih) 

+ 2 |[| - Yh|IO;Q + CO(Q) Ii YhH O;aQ + Cp(Q)2 I I -Jh I hO;Qh 

Proof. Let X E H2'2(Q) be the weak solution of the problem 

-\X = eh, Xi.Q = 0. 

X satisfies the a priori estimates 

IIVXIIO;Q < Cp(Q) ||ehH o;Q, 11V2XIlO;Q < KlehIIo;Q 
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Using the definition of X, Qh\Q = 0 and performing the same operations as in the 
proof of Theorem 1 yields (since eh - (j -h) E H 

,/(eh - (9 -9h)) eh = ,/ V(eh - (9-9h)) * VX 

- (r(ih), X-Xh) j + ([anth1 X -Xh)? 

fh AQ Q 

for arbitrary Xh E Vh. Now take Xh =IhX. Note that for Ih, as defined in Section 3, 
it was proved in [Cl] that I IX-IhXI 10;T ? C dQjV2XHo ;, for all T e Th. Performing 
the same computations as in the proof of Lemma 2 we obtain for r(iih) e L2(Th) 

|(r (iUh ) X X-Iho X) jgh| 
z 

< c| hr(ih)% 11|V2XlHloQ + E | r(iih)| o jQE X IxlHO;QE 

EE?ha 

_3 ~ 
+C E d 2Ir(iih) IIO;T (11V2XH l0;WT + m mm dE 2I IX IIO) 

Inserting the Sobolev inequality into the second term, it is estimated by 

( Bp | lr(iih) 12;QE 
2 

IV2XO;Q\Qh' 

EE?ha h 

whereas the fourth term can be estimated using 

E dT ( E min dE2 (Baj1 IlanXHIO;E + Ba,2 HaflXHO.QE)) H|r(uh)1o0;T 
fha P ;T Ih;p 

1' ~~3/ 
< c L dT ( mmn dE (Co(Qh)Bal + Ba,2)) 

( Co(Xh<1HanxHo;E + IanX O;QE) |r(Uh)110;T 

h ;T,: 

<?C(Z c4dT ( Z dmin dE Ba ) lr(Uh)HIO2) 
T2 

PEEAfh;T 

x (CO(Qh)-1 lanXHIo;aQh + I V2XH O;Q\Qh) 

Using the trace inequality from Lemma 1 applied to VX and the a priori estimates 
for X yields 

IlanXHIO;aQh < '0(Qh) (|V2XHO;Qh + d1h VXI10;Qh) 

< Ca(Qh) (i + d-'Cp(Q)) IIehIIo;Q = Co(Qh) IIehIIo;;Q 

and we finally obtain 

(r(Uh), X- Xh) h + (r(iih), X) h\h CIhr(Uh?)llh + IIhr(iih)HI h\Th) Ilehllo;Q. 

The estimate for I ([anUh, X - Xh) follows in the same way. D 
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Remark 4. i. The constants C.,... , C4 from Theorems 1 and 3 are of moderate 
size. To fix them in the numerical algorithm, one can compute some examples 
with known solutions and compare the sizes of the different error terms and 
then adjust factors such that the computed error is some factor larger than the 
exact error. This is what we have done in our implementation (see Section 7). 
In case M > 1 we let c1 = C2, C3 = C4. 

ii. To prove Theorem 3 for non-convex domains with smooth boundary one needs 
a H2'2-continuous extension of X to Q U Qh and one would get additional error 
terms on Qh\Q. Note that in the derivation of Theorem 1 we make use of the 

fact that v E H1 2(Q) could be extended H1'2-continuously by zero. 

iii. By scaling we see that Ca(Qh) behaves like O(d'). Unfortunately we have 
no further estimates in terms of simple available geometric constants. In case 
n = 2 estimates for BgE1, BE and B E are provided in Section 6. 

iv. The main task in the preceding estimate was to ensure that the additional 
terms, compared to the standard interpolation estimate, did not get dominant 
if the grid size tends to zero. Therefore the term IIXIIO;E has to be estimated 
very carefully and in the interpolation estimate we cannot argue only locally 

in analogy to the proof of Theorem 1. To ensure that h behaves like d2 (for 
T E Th) up to higher order terms for dT -> 0 we would otherwise need an 

estimate IIXIIO;E < B HIV2XIO;QE, with Bg < Cdi. (We note here, without 
proof, that if Q is convex and polygonally bounded, such an estimate can be 

established.) But in general we only obtain BE - O(dE) as can be seen by the 

following example: 

QE = { (s, t) 
0 ? 

< t < (d2 _ S2) }, 

X(S, t) = t - (d2 - s2) 

so that flV2XIIO;QE = 4/V'3d2 and IIXIIO;E = 4/ 5dV 

6. ESTIMATES FOR SOBOLEV CONSTANTS 

In this section we will give estimates for CpEI CaEI B E1, B E and B E in the 

two-dimensional case. In three dimensions further knowledge on the shape of QE 

is necessary to proceed similarly. 

Let RE be a rectangle containing QE with edges parallel and orthogonal to E. 

RE can be decomposed in the form RE = RE1)UEURE2)I where E is the intersection 

between QE and the continuation of E and R(1) ( (2) are the connected components RE , aE tecnetdcmoet 

of RE\E. Then we immediately see that CpE < max{C(l, C(2)}, where Cpi) 

CP (R), aR5)\E). To estimate each Cpi) we assume without loss of generality 

that F := [0, L], R(E) [O, L] x [O, H] and extend v by 0 outside QE. Substituting 

v(s, t) for (s, t) E [0, L] x [0, H] by v(s, H) - 
fta2V(S, t')dt' we easily obtain the 

estimates IIVIHO;[O,L]x[O,H] < H I HVVH 10;[O,L] x [0,H] and I IVH VO;E < H' I VvH 10;[O,L] x [0,H]; 

thus C(i) < H and CE < H2. 

Asking for estimates for BgE1, BE2 B E we assume as before E C R x {0} and 

QE c R := [O, L] x [0, H] because Q is supposed to be convex. Furthermore, let 

v E H2,2(QE) and let aQE\E be a piecewise smooth curve. For each s E E there is 
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a closed interval Is = [0, h,], for some hs E [0, H], such that v(s, h,) = 0 and thus 

IV(S, ) = a2V(S, t') dt'| < H Ia2v(s, 0)| + H 2 1a122v(s, ) I 0;is 
Is 

Taking the square and integrating yields 11V11O;E <VN (HIa2Vjo;E+H2 |a2av1 o;QE), 

so that Bg1? < 2H, Ba2 < 2H3. Finally, let Jt {(s,t) (s,t) E QE} 

for t E [0,H]. Using vl,j, = 0 -and fj ajv(s,t)ds = 0 we obtain Iv(s,t)12 < 

L31 la2v(., t) ;jt. Integrating over QE we end up with IIVH|O;QE < L211HV2VH O;QE; 
that is Bp < L2. 

If the grid size h tends to 0, it is reasonable to assume that H < C d2 and 
L = dE. Thereby CE,BE < CdE, C < C0dE, and Bg < Cd2. This ensures that 
the effect of the boundary approximation on the error is of higher order for linear 
Finite Elements (see Theorems 1 and 3). 

7. THE ALGORITHM 

In this section we discuss a robust implementation of linear Finite Elements 
for Poisson's equation on two-dimensional domains with piecewise smooth bound- 
ary. We especially take into account that only parts of the domain have to be 
triangulated and that data f and g can only be evaluated pointwise in Q or on aQ, 
respectively. Furthermore, the different error terms have to be calculated efficiently. 
This means for the error terms due to the boundary approximation that the cost 
in storage and speed is proportional to the geometric complexity of the domains 
boundary. Therefore, it turns out to be less expensive than an overall equally fine 
approximation of Q by Qh- 

At first, the a posteriori estimates for the energy norm given in Section 5 re- 
fer to the boundary aQ of the continuous problem. The only restriction we made 
is that this boundary is piecewise smooth. However, we are unable to handle the 
exact boundary aQ algorithmically. Instead we represent aQ by some polygonal ap- 
proximation B. The initial boundary approximation is generated by a stable path 
following algorithm, which we have implemented for piecewise implicitly defined 
boundary segments. Thereby we obtain a sufficiently fine geometrical approxi- 
mation. Before solving the first discrete problem we have to define some initial 
triangulation Th. We only assume boundary vertices of Th to be (a subset of) 
points in B. During the calculation, Th is successively refined and in the course of 
this, we first refine B if necessary and then pick up points in B to refine the bound- 
ary of the triangulation. No assumption is made on a geometrically fitting shape 
and the initial mesh may cover only part of the domain. Therefore the algorithm 
has to be able to enlarge the discretized domain substantially if indicated by the 
a posteriori estimates. Under these circumstances a Delaunay technique to adapt 
the triangulation seems to be more preferable for refinement than strategies based 
on subdivision with boundary fitting [Ba, Ri]. For reference we cite [GH, We, Re]. 
We apply a Delaunay refinement based on point insertion and edge swapping as 
the basic operations. The local grid size is described by a function h on all nodes 
p E A/Th. A subscript h from now on indicates the corresponding fineness. Based 
on estimates of the local errors, the values of h are locally decreased, and the refine- 
ment procedure then adapts the mesh until the desired grid size is again attained. 
The proposed adaptive algorithm can be summarized as follows: 
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B initial boundary approximation; 
Th initial triangulation, with boundary vertices in B; 
h initial fineness function on all vertices in Th; 

do { 
calculate discrete solution Uh on Th; 

for all T E Th errT estimate(T, Uh, f, g); 

err := (ZTC-rh erT) 2 
if (err > TOL) { 

hnew; = adjust({errT I T E Th}, h); 
Thnew:= refine (Th, hnew,B ); 
h :=hnew; 

} 
} while (err > TOL); 

Subsequently, we explain the estimate, adjust and refine procedures, which deal 
with the concrete calculation of the a posteriori estimates, the marking of regions 
for refinement, and the actual mesh adaptation. 

Estimating the error. The purpose of this section is to describe how to compute 
(an approximation of) the H1'2-a posteriori error, that is, the left hand side of the 
assertion stated in Theorem 1. The "standard" term of this error estimate, the sum 
of the local element and edge residuals for T E Th 

qT := Cl JJhfhlJO;T + C2 d+ hT [antth1 Hl;hT + E Cg || [anUh1l HO;QEnQ 

E&h;T 

is easy to evaluate. For reliable handling of the data error If - fhllo;QnQh we refer 
to [Dol]. What is left in the case of linear Finite Elements is to argue about how 
to evaluate 

||V(j - gh)HO;Qi llhf IOJ-h \.h 

At first, we have to define the extensions g and 9h. For 9h we simply take 9h - 

iUh, where iLh on QE is defined as the extension of the linear polynomial Uh|T(E). 

Furthermore, on Th \ T2 we set g = 9h and in the remaining boundary region 
we suppose that some interpolation within aQ and the boundary of UTE-h\T T is 
given. To simplify the presentation, we assume that a segment of aQ in between two 
boundary vertices intersects at most the interior of one element, and that boundary 
elements have only one boundary edge. The other cases can be treated similarly. 
For E E we denote (DE = T(E) U QE. Then it remains to consider 

errg(cJE) :h) |O;WE and errf ) = hflO;QE 

Now the basic idea is to replace the original estimates with computable and reliable 
formulas, for simplicity again denoted by err9(CUE), errf (QE), using the polygonal 
boundary representation. Here we especially focus on an efficient and robust calcu- 
latioln, which means that the estimation procedure returns an upper bound of the 
true estimate; in the saturated case the calculated estimates should converge for an 
increasing computational resolution (see below) to the true values, and finally the 
calculation has to be fast. 

At first we extract from the polygonal boundary B the segment in between 
the vertices of the boundary edge E. Then we temporarily insert for each line 
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FIGURE 2. On the left the recursive subdivision of WE required 
in the calculation of errg (&9E) is sketched in two cases. On the 
right we show an example of a triangle fan used to approximate 
errf(QE). The true boundary aQ is indicated by thick lines and 
the corresponding boundary triangles are shaded. 

segment in B a fixed number of additional test points, randomly distributed on the 
corresponding segment of aQ. Inserting more test points will increase the quality 
of the evaluation. To do this, we again apply the path following algorithm already 
used to generate the initial boundary approximation. Now we have an improved 
representation of the boundary segment a&9E n aQ at hand and we start to estimate 
the error, corresponding to the Dirichlet data g. We replace g by the piecewise linear 
interpolation on the current refined polygonal boundary, which attains the values 
of g at the vertices. Then we ask for an extension of this interpolated function onto 
the polygonally approximated domain WE, for simplicity again called WE. Therefore 
we temporarily mesh WE with triangles A\i for 0 < i < m spanned by vertices from 
the bounding polygon. On each of these triangles the extension is defined as the 
linear interpolation Iig of the true values of g at the vertices. In the saturated case, 
where SE is convex, a fan-like mesh appears to be the canonical choice (Figure 2). 
In the general case we proceed similarly. First we build a fan of triangles contained 
in WE and centered at the unique vertex from a&E not located on aQ. Then we 
mesh the remaining "bubbles" by a recursive call of the fan generation (Figure 2). 
Finally we compute 

err9(COE) -V(Iig-9h) - 

?<i<m \ 

Next, we give a formula to calculate errf (QE). This is again based on the 
same temporarily refined polygonal boundary segment. Now we construct a fan 
of triangles Aj for 0 < j < r centered at the midpoint of the boundary edge and 
covering the region in between the edge and the boundary polygon (Figure 2) In the 
non-saturated case this covering might overlap. Let us denote by h'E the diameter 
of QE in the direction normal to E. Then we evaluate 

errf (QE) = (hE)2 XQ\Qh (yj) f(yj)2 | A 

O<j<r 
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FIGURE 3. Three different refinement operations on triangles. 

where yj is a random point in Aj and XA is the indicator function of a set A. 1n 
the general case an overlap in the covering would lead to an overestimate of the 
error, whereas in the saturated case a sufficient approximation of the exact value 
is obtained. 

If we increase the number of test points inserted temporarily into the boundary 
list we improve the reliable calculation of both estimates err9 ((DE) and errf (QE), 
despite only one test point per triangle A\j for the f evaluation. 

Let us finally collect the different local error terms in the following definition of 
a local error estimator errT: 

errT := 7T 2+ Cp(Q) flf _'fh|;iTni + errf(QE) + 2err9((DE) 

for an element T E Th with boundary edge ? E ?0, which is used in the above 
algorithm. 

Refining the triangulation. The desired grid size h on the vertices of the current 
T is adjusted following each error estimation in the algorithm; therefore, we mark 
triangles for refinement. Then we multiply the h values on vertices of marked 
triangles by some refinement factor /3 < 1 (/3 = 1 in the above examples) which 
describes the desired decrease in the local grid size. Afterward, we successively 
refine the triangulation (see below) until the prescribed fineness h is attained on 
all triangles. Here the refinement of a single triangle is the basic operation. Each 
single triangle fulfills the refinement criteria corresponding to the function h if 
dT < h(p) Vp E AfT. Interior triangles T E Th are refined by inserting their bary 
center as a new point; boundary triangles T E T9 with the boundary edge as longest 
edge are refined adding a new point from the boundary polygon 1B. If there is none 
on the corresponding segment of aQ, an additional point is in advance added to 1B 
(Figure 3). In any case afterward we start a recursive swap operation on pairs of the 
new created triangles and the adjacent elements. This ensures that we again obtain 
a Delaunay triangulation [Re]. The values of h on the new vertices are defined as 
linear interpolation of the h values on the vertices of the refined edge or the refined 
triangle, respectively. Following this refinement strategy we implicitly assume that 
no overlaps will occur. Otherwise the proposed meshing process has to be replaced 
by some global Delaunay remeshing, which is out of the scope of the presented work 
(see below the remarks on the 3D case). In the applications we have studied and 
for the examples given in this paper this assumption has always been fulfilled. 

Preconditioning the linear solver. The Delaunay refinement procedure sup- 
ports us with a hierarchy of grids. In contrast to other refinement algorithms here 
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the corresponding function spaces are not nested. But nevertheless we can imple- 
ment a hierarchical preconditioning [Y] where, depending on the type of triangle 
refinement, each node except those on the initial triangulation has 2 or 3 parent 
nodes with weights 2 and 3, respectively. In the examples this preconditioning 
turns out to be efficient. In the next section a table gives results for a specific 
application. Therein, the last column indicates the moderate increase of necessary 
CG iterations for a rapidly increasing number of unknowns. 

Remark on the three-dimensional case. In the preceding paragraphs we have 
discussed a two-dimensional implementation which efficiently takes into account 
the effects of a posteriori measured error terms due to a possibly coarse boundary 
approximation. The same ideas carry over to three dimensions although a lot of 
programming effort would be necessary. For three-dimensional domains with piece- 
wise smooth boundaries Delaunay techniques, which create an environmental mesh 
including the actual domain and all inside holes, have turned out to be appropriate 
[Ba, HTH]. An additional constraint in the mesh generation, that faces on aQ are 
represented by element faces, then allows the extraction of a mesh for Qh. Typi- 
cally, very few outer points are sufficient to create such a mesh, which furthermore 
involves a natural segmentation of Q \ Qh into sets QE associated to boundary faces 
E ES9, which is required by the error analysis presented. 

8. NUMERICAL EXAMPLES 

In this section we give some examples which underline the capabilities of the 
algorithm discussed. 

At first we compare the order of the different error terms in our estimate for a 
domain with smooth boundary. The singular part (sing.) consisting of the jumps of 
the normal derivatives on the inner edges and the element residual (el.res.) are of 
order 0(h), where the error terms iV( - h)lO jQ, f fllo jth\h are of order 3(h2) 

and 0(h3), respectively. Finally, the total estimated error (err) and the relative 
error (rel.err.) are listed. The table below lists all these values for a sequence of 
uniform grid sizes h and for Q = B1 (0), f = 1 and g = 2x2 - 1. 

h | sing. el.res. | err9 , errf err rel.e. |AfTh J tit 
1.0 0.000 6.46e-1 3.935 8.03e-1 7.996 6.793 3 0 
5.0e-1 3.71e-1 2.07e-I 1.00e-1 3.73-e3 5.50e-1 2.15e-1 47 11 
2.5e-1 1.98e-1 1.1le-1 9.79e-2 1.1Oe-3 2.80e-1 1.09e-1 129 13 
1.3e-1 1.02e-1 5.64e-2 2.63e-2 1.38e-4 1.15e- 1 4.44e-2 475 17 
6.3e-2 5.07e-2 2.82e-2 9.81e-3 1.67e-5 5.44e-2 2.1 le-2 1792 20 
3. le-2 2.57e-2 1.42e-2 3.62e-3 2.53e-6 2.67e-2 1.03e-2 6979 25 
1.6e-2 1.26e-2 6.99e-3 1.34e-3 3.52e-7 1.29e-2 4.99e-3 28378 26 
7.8e-3 6.33e-3 3.51e-3 4.45e-4 3.1 le-8 6.39e-3 2.48e-3 111152 29 

The following figures show results obtained for various applications. They es- 
pecially emphasize that contributions to the error from outside the initial grid are 
detected (see Figures 4, 5, 6). Furthermore, the algorithm resolves geometrical 
singularities not in advance but depending on the local error estimates (see some 
of the cusps in Figure 4, and the corner in Figure 5). Finally, parts of the domain 
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FIGURE 4. Given a domain with cusps and g 0, f X(A) where 
A is a small ball inside one of the non-discretized "bubbles" of the 
initial grid, the initial and the final grid and isolines of the solution 
on the final discretization are shown. 

FiGURE 5. Given a star shaped domain and f= 0, g- 

max(0, y - C), the final grid and isolines of the solution are drawn. 

FiGURE 6. A coarse starting grid inside a complex domain, the 
final adaptive finite element mesh, and a perspective view on an 
isoline image of the solution. 

with very small error contributions will stay non-discretized (see one of the circular 
regions in Figure 6). Figure 7 shows the behavior of our algorithm at corner points 
of &9Q that are not vertex of the triangulation. 
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/~~~~~~~~Z 

FIGURE 7. Successive mesh refinement steps at a domain corner, 
where the corner point is explicitly not depicted by the algorithm. 
This case is not covered by our theory. Nevertheless the algorithms 
also work robustly in this case. 
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